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Bound states in the continuum (BICs) in photonic-crystal slabs have been conventionally classified into three types:
single-resonance parametric, symmetry-protected, and Friedrich–Wintgen BICs. Here, we show that the single-
resonance parametric BICs come from the coupling between the guided resonance (GR) and Fabry–Perot (FP) modes,
and the symmetry-protected BICs from the coupling between degenerate GR modes. Hence, the three types of BICs in
photonic-crystal slabs can be classified by the three different Friedrich–Wintgen origins. Based on this universal classi-
fication, a global phase diagram of BICs can be obtained with each phase identified by the indices of the three different
Friedrich–Wintgen-type BICs. When BICs are created or annihilated, a phase transition occurs and is experimentally
observed, in which the FP modes play a significant role. Our work shows a clear physical picture on whether BICs exist
and how sensitive they are to changes in the parameter space, and enables improvements in experiment design and
applications. © 2022 Optica Publishing Group under the terms of the Optica Open Access Publishing Agreement
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1. INTRODUCTION

Bound states in the continuum (BICs) are a special type of res-
onance state with an infinite lifetime [1–3]. They coexist with
extended states in free space. Both of them have the same momen-
tum and energy, but are not coupled to each other. In 1929, von
Neuman and Wigner established the concept of BIC by con-
structing a quantum-mechanical example of a potential that
is oscillatory and decays slowly to zero at infinity [4]. Yet later,
BICs were found to be a wave phenomenon widely existing in
quantum [5], photonic [6–28], acoustic [29], and plasmonic
systems [30]. According to the formation mechanism, all of the
BICs discovered up to now are divided into four types [1,3]. The
first type is the single-resonance parametric BIC evolving from
a single-resonance mode when the radiation of its constituent
components is destructively interfered [6–18]. The second type
is the symmetry-protected BIC, which is caused by the symmetry
mismatch between it and the extended states in the environ-
ment [19–22]. The third type is the Friedrich–Wintgen BIC
[5,23–25,29,30], which is the result of complete destructive
interference of two resonance modes. The fourth type is called
the Fabry–Perot (FP) BIC, which is constructed by two separate
resonators that form a FP cavity without leakage [26–28]. In this
work, we study the evolution of BICs in a single photonic-crystal

(PhC) slab under parameter variations. Since the fourth type BIC
is observed in two parallel PhC slabs [27], it is not associated with
the BICs in a single slab we study here.

The aim of this work is to establish a framework based on which
the creation and annihilation of the BICs as well as their intercon-
versions can all be studied simultaneously. It is well known that
all BICs correspond to vortex centers of far-field polarization so
that topological charges can be assigned, and also the conservation
of total topological charge holds during the evolution of BICs
[7–9]. The interconversions of different types of BICs can also be
investigated from this topological viewpoint [21–23]. However,
the dominant role in the interconversions of different types of BICs
and the resultant global phase diagram under parameter variations
are yet to be revealed.

In order to establish such a framework, based on the idea of
Friedrich–Wintgen BICs [5], we propose a universal classification
of BICs in the PhC slab. We show that the three aforementioned
types of BICs can be obtained from the interaction of two reso-
nance modes of the slab. There are basically two types of slab modes
existing above the light line, which are guided resonance (GR)
modes and FP modes [31]. The FP modes were previously consid-
ered only as background of the spectrum because of their low Q
factors [15,32,33]. Here, we demonstrate that the single-resonance
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parametric BIC (the first type) is in fact not a single-resonance
mode, but the result of the coupling of a GR mode and a FP mode.
This type of BIC is typical in the PhC slab and is also referred to as
the accidental BIC [6–9,12–16]. The symmetry-protected BIC
(the second type) can be viewed as the result of the coupling of
degenerate GR modes at high symmetry points in momentum
space. The third type, i.e., the original Friedrich–Wintgen BIC,
can be obtained from the coupling of two different GR modes.
Thus, all the three types of BICs in PhC slabs can be regarded as
Friedrich–Wintgen-type BICs, and can be classified by the above
three different origins.

Based on the above universal classification, we further propose a
global phase diagram for the BICs in PhC slabs. Each phase is iden-
tified by three indices (n1, n2, n3), where ni (i = 1, 2, 3) denotes the
number of BICs with the i th type of Friedrich–Wintgen origin in
this phase. When a phase transition takes place, BICs can merge,
emerge, or disappear in momentum space. Thus, the existence
of the different types of BICs and how sensitive they are to the
changes in system parameter can be clearly seen in the phase dia-
gram. It should be emphasized that the FP modes in a single slab
play a significant role in the evolution of BICs and phase transi-
tions. We have also carried out experiments to observe the critical
points of the phase transitions, including the merging process of
BICs at the off− 0 point. The classification of BICs according to
Friedrich–Wintgen origins and the corresponding global phase
diagrams not only deepen our understanding of BICs, but also
pave the way to their applications.

2. THEORY AND RESULTS

A. Friedrich–Wintgen Origin

Friedrich and Wintgen demonstrated that BICs can occur due to
the interference of different resonances [5]. If two resonances have
a degeneracy point when we tune some continuous parameter, the
interference can cause an avoided level crossing of the frequen-
cies, and a BIC with vanishing resonance width may be formed
at some specific value of the continuous parameter. The effective
Hamiltonian for an open photonic system has been studied pre-
viously [33,34], which is non-Hermitian and can be written as
follows:

H = HB − i0, (1a)

0 = D† D
/

2, (1b)

where HB is a Hermitian operator giving rise to discrete and real
eigenvalues for the bound states. When these eigenstates couple
to some open channels characterized by the coupling matrix D,
the energy will leak out and the eigenvalues of energy are no longer
purely real. 0 is the operator that governs the imaginary part of
eigenenergy. If the coupling matrix D has a zero eigenvalue; namely
there exists a null vector |ψ0〉 satisfying

D |ψ0〉 = 0, (2)

and if |ψ0〉 is also an eigenvector of HB , i.e.,

HB |ψ0〉 =ω0 |ψ0〉 , (3)

state |ψ0〉 is a BIC having a purely real eigenenergy and satisfying
H|ψ0〉 =ω0|ψ0〉. Here we adopt natural unit with ~= 1 so that
the energy and frequency have the same natural unit.

For a two-level system, both HB and0 become 2× 2 matrices.
For the case of a PhC slab, optical waves can radiate into both the
upper and lower space with two orthogonal polarizations. There
exist four open channels in total, and thus D is a 4× 2 matrix. An
interesting case is that on the high symmetry lines in the Brillouin
zone, two polarization degrees of freedom can be considered sep-
arately due to the symmetry [35]. Furthermore, if the system has
up–down mirror (σz) symmetry, the radiation into the upper and
lower space is either symmetric or antisymmetric. Therefore the
total number of independent open channels can be further reduced
to 1. The coupling matrix D becomes a 1× 2 matrix, and Eq. (1.2)
turns into 0 = D† D. A null vector satisfying Eq. (2) should exist
since the rank of D is less than the number of columns. To be
specific, one can set

D=
(
e iθ1√γ1, e iθ2√γ2

)
, (4)

where γi and θi are the decay rates and the phase angle of radiation
of the i th level, respectively. The relative phase angle θ1 − θ2 can be
0 orπ [33]. The Hamiltonian in Eq. (1) thus becomes

H =
(
ω1 κ

κ ω2

)
− i

(
γ1 ±

√
γ1γ2

±
√
γ1γ2 γ2

)
, (5)

whereω1 andω2 are the resonant frequencies, and κ and±
√
γ1γ2

are the near-field and the far-field coupling coefficients, respec-
tively. The signs ± correspond to, respectively, the even and odd
symmetries of the two resonance modes. The null vector of Eq. (4)
can be easily found:

|ψ0〉 =
(√
γ2,∓

√
γ1
)/√

γ1 + γ2. (6)

The condition of BIC requires that this null vector |ψ0〉 is also an
eigenvector of HB . According to Eqs. (3) and (5), we obtain

κ(γ1 − γ2)=±
√
γ1γ2(ω1 −ω2). (7)

Our aim is to demonstrate that the BICs in the PhC slab can be
described by a Friedrich–Wintgen-type Hamiltonian in Eq. (1a),
or more specifically, Eq. (5). The key point is to determine the
energy levels involved in this Hamiltonian. It is commonly
believed that the BIC appearing in momentum space with an
accidental wave vector k is a single-resonance mode lying on a GR
band, which can be interpreted by the destructive interference
of the radiation from its constituent waves and achieved by fine-
tuning system parameters [1,12–14]. In the following, we first
prove that it is the interaction between a FP mode and a GR mode
that generates an accidental BIC.

We take a system of one-dimensional PhC slab as an example.
Figure 1(a) shows the one-dimensional PhC slab under study with
a period of a in the x direction, uniformity in the y direction, and
a thickness of h in the z direction. The alternating dielectric layers
in the PhC have relative permittivities ε1 and ε2, and thicknesses
d and a−d , respectively. The background medium is air. The
basic properties of FP and GR modes such as their dispersions can
be investigated from the viewpoint of effective medium theory
(EMT) [36] in which the PhC slab is treated as a homogeneous
slab with the same thickness and an effective relative permittivity
εeff. Using the method of the transfer matrix, we can calculate all
the photonic modes of this effective medium slab, as shown in
Fig. 1(b). There exist two types of modes in fact: guided modes
below the light line (solid lines labeled by GM) and FP modes
above the light line (dashed lines). It is noted that a small portion



Research Article Vol. 9, No. 12 / December 2022 / Optica 1355

4 8 12

1

2

3

4

(0,1,0)
(1,1,0)

(1,1,0)

(a)

(c)

h/
a

2/ 1

(2,1,0)

(4,1,0)

4 8 12

1

2
(d)

h/
a

2 / 1

(0,0,0)

(0,0,0) (1,0,0)

(0,0,1)

(1,0,0)

(0,0,1)
(1,0,1)

10
0

1

degenerate GRs

different GRs(b)

GR+FP

FP2

(n1, n2, n3) = # of (GR+FP, degenerate GRs, different GRs)

GM: guided mode
GR: guided resonance

 (2
πc

/a
)

kx (2π/a)

GR(-1)
2

GR(+1)
0

GR(-1)
1GR(-1)

0

FP1

GM0

GM1

GM2

z

x

1 2

a
d h

ε ε

ε ε ε ε

(2,1,0) (1,1,0)

(1,1,0)

(0,1,0)

FP2

FP4

( 1)
0GR +

FP2

FP2

( 1)
2GR −

ω

FP2

FP4

FP4

( 1)
0GR −

FP2

FP2

(3,1,0)

Fig. 1. Global phase diagrams of BICs in the PhC slab. (a) Schematic diagram of the PhC slab. (b) Band diagrams of the effective homogeneous slab of a
PhC slab, including guided modes (labeled by GMn) and FP modes. When a periodic modulation of the dielectric constant is introduced, the GMn band is
folded into the first Brillouin zone and forms a guided resonance band (labeled by GR(m)n ). The gray shaded region indicates the region with only one radia-
tion channel. The three insets show the diagrams of Friedrich–Wintgen BICs from three different origins: GR+FP modes, degenerate GR modes, and two
different GR modes, including the energy levels before and after coupling of the two modes and the corresponding reflection spectra. (c),(d) Phase diagrams
of BICs on GR(−1)

0 and GR(+1)
0 bands in the first Brillouin zone for TE polarization, respectively. Only the positive kx axis is considered due to the inver-

sion symmetry. Each phase is indicated by (n1, n2, n3), indices of the three types of Friedrich–Wintgen BICs shown in (b). Solid (dashed) line shows that
the BIC emerges or disappears at the 0 point (from the light line or folded light line). Black and red lines represent the critical lines for the BICs resulting
from the coupling of the GR and FP modes and BICs resulting from two different GR modes, respectively. Several examples of simulated band diagrams are
displayed in the insets to show different BIC phases, where the red, black, and blue dots represent the BICs from GR+FP modes, degenerate GR modes, and
two different GR modes, respectively. Here, the other system parameters are chosen as ε1 = 1 and d = 0.5a .

of the FP bands can lie below the light line [37]. If we divide the
effective medium slab into unit cells with period a , the dispersion
curve of the guided modes will be folded into the first Brillouin
zone. Once a finite periodic modulation of dielectric constant is
considered, the folded GM mode will transform into a GR mode
with a finite decay rate as it couples to the radiation modes. When
the periodic modulation is small, the dispersion of a GR mode can
be well approximated by that of the corresponding folded GM
mode, but its decay rate cannot be given by the EMT. Here, the GR
bands are labeled by GR(m)n (either for TE or TM polarization),
which represents the nth-order GR mode with m being the index of
band folding in the reduced-zone scheme. In this study, the region
with only one radiation channel is considered, as indicated by the
gray shaded region in Fig. 1(b).

If we track the accidental BICs in the parameter space, it is
found that they are close to the intersection points of the cor-
responding folded GM and FP bands in the effective medium
slab (see Figs. S2 and S3 in Supplement 1 for examples). Here,
the folded GM and FP modes should have the same σz sym-
metry. Since the dispersion of the GR mode can be approximated
by the corresponding folded GM bands within the framework
of EMT, these intersection points can be treated as nearly the
avoided crossing points [24,25]. Hence, it can be inferred that
the accidental BICs, appearing near the avoided crossing points,
are also a type of Friedrich–Wintgen BIC. The non-interacting
GR and FP modes serve as the basis vectors of the Hamiltonian
in Eq. (5). The interaction between these GR and FP modes
modifies not only the eigenenergies but also the eigenstates. In
particular, it will give rise to an accidental BIC with no radiation

loss when the condition Eq. (7) is satisfied. Let us use the sub-
script 1 (2) to denote the GR (FP) mode. Since the FP modes are
much more leaky than the GR modes, i.e., γ1� γ2, we have that

|1ω1,2|
1
= |ω1 −ω2| ≈ |κ

√
γ2/γ1| � |κ| from Eq. (7). This

manifests a significant feature of accidental BICs that their devia-
tion from the corresponding avoided crossing points is much larger
than the coupling strength of the GR and FP bands. The sign of κ
in Eq. (5) determines on which side of the intersection point the
BIC will occur.

In order to obtain the effective Hamiltonian in Eq. (5), in
what follows a general procedure is employed. The eigenfre-
quencies of the GR and FP modes in the PhC slab, including
both the real and imaginary parts, can be obtained by full-wave
simulations. This will impose four conditions. We denote the
three parameters obtained from the EMT by ω1,emt, ω2,emt, and
γ2,emt, and choose them as the reference values of ω1, ω2, and
γ2 of the non-interacting GR and FP modes by allowing a small
variation, i.e., ω1 =ω1,emt +1ω1, ω2 =ω2,emt +1ω2, and
γ2 = γ2,emt +1γ2. The four aforementioned conditions can be
used to fix these parameters since the EMT is a good starting point
for the effective Hamiltonian. If the periodic modulation is small
(ε2/ε1 ≈ 1), the fitting procedure can be further simplified. In this
case, the three parameters ω1,emt, ω2,emt, and γ2,emt can be directly
used without correction, and only two of the four conditions are
required to solve the other two parameters γ1 and κ . Our fitting
approach based on the EMT confirms that the condition Eq. (7)
holds exactly at the BICs (see Supplement 1, Section 3, for the
details of the procedure and examples). This verifies our conclusion
that this type of BIC is a form of Friedrich–Wintgen BIC.

https://doi.org/10.6084/m9.figshare.21518352
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At the left side of Fig. 1(b), we schematically show the energy
level diagrams and the corresponding reflection spectra of the
GR mode (black) and FP mode (red) that give rise to this type of
BIC. It is noted that the FP mode corresponds to the peak of the
transmission spectra, i.e., the dip of the reflection spectra. A Fano
resonance occurs when the GR mode and FP mode are coupled to
each other. If the condition Eq. (7) of BIC is satisfied, the linewidth
of the Fano resonance vanishes.

From the perspective of Friedrich–Wintgen origin of BIC, the
symmetry-protected BIC at the0 point can also be considered as a
result of the coupling of degenerate GR modes [38]. In the effective
medium slab, the folded bands of GM(−1)

n and GM(+1)
n at the 0

point give rise to a pair of degenerate states. They have the same
frequency ω and decay rate γ , and therefore automatically satisfy
the BIC condition in Eq. (2). When this pair of degenerate states
are coupled to each other, one of them has a doubled radiation
loss while the other becomes the so-called symmetry-protected
BIC (see Supplement 1, Section 4, for details). In the middle of
the left side of Fig. 1(b) are the energy levels and the corresponding
reflection spectra of a pair of degenerate GR modes that result in
the symmetry-protected BIC.

Besides the above two types of Friedrich–Wintgen BIC, there
exists another type of Friedrich–Wintgen BIC in the PhC slab.
It stems from the coupling of two GR modes having the same σz

symmetry but belonging to different orders, such as GR(+1)
0 and

GR(−1)
2 modes. This type of Friedrich–Wintgen BIC has been

discussed in previous studies [23,25]. Normally, because the decay
rates of two GR modes are quite close, i.e., γ1 ∼ γ2, their cou-
pling is likely to lead to an anticrossing effect. Using Eq. (7), it is
inferred that |1ω1,2| � |κ| and the consequent BIC is located in
the vicinity of the anticrossing point, in sharp contrast to the case of
accidental BICs at which |1ω1,2| � |κ|. Therefore, the accidental
BICs can deviate from the avoided crossing point considerably
and their Friedrich–Wintgen origin is less obvious, so that they
are treated as single-resonance modes previously [1,12–14]. The
energy levels and the corresponding reflection spectra of the two
different GR modes for the conventional Friedrich–Wintgen BICs
are shown in the uppermost inset of Fig. 1(b). Thus, the three types
of BICs in PhC slabs can all be viewed as the Friedrich–Wintgen-
type BIC and can be classified by their origins from the coupling
of different modes: (1) GR+FP modes, (2) a pair of degenerate GR
modes, and (3) two different GR modes. For any particular band
in the PhC slab, with system parameters specified, we can deter-
mine the number (n1, n2, n3) of Friedrich–Wintgen BICs of these
three types on the band. In fact, this proposed model based on the
Friedrich–Wintgen Hamiltonian is general and can also be applied
to two-dimensional PhC slabs (see Supplement 1, Section 5, for
examples).

B. Global Phase Diagram

In the region with only one radiation channel, as parameters
change, BICs move continuously in momentum space. In such
cases, the BICs associated with integer topological charges exist
robustly, we can use (n1, n2, n3) as indices to define the phase of
BIC on the energy band and draw the global phase diagram in
the parameter space. When BICs move out of the region with
one radiation channel, their numbers (n1, n2, n3) change and a
phase transition takes place. It is worth pointing out that when
BICs merge or annihilate, the indices (n1, n2, n3) also change

accordingly so that different BIC phases arise. Take the TE mode
(E = E y ŷ , H = Hx x̂ + Hz ẑ) as an example. The phase diagram
for the lowest band–GR(−1)

0 is shown in Fig. 1(c). Due to the inver-
sion symmetry, the indices (n1, n2, n3) only cover the BICs on the
positive kx axis of the first Brillouin zone. In the discussion below,
we fix the system parameters as ε1 = 1 and d = 0.5a and vary ε2

and h , and the presented results for GR and FP modes are from the
full-wave simulations unless otherwise specified. In this parameter
space, the symmetry-protected BIC due to the coupling of GR(−1)

0

and GR(+1)
0 modes at 0 point always appears on the lower band.

This means that the second index is kept at n2 = 1 and there is
no band inversion at the 0 point. In the first Brillouin zone, the
GR(−1)

0 band is the lowest frequency band and will not intersect
with any other GR bands. Therefore, the type of BIC caused by two
different GR modes will not appear on the GR(−1)

0 band, namely
the third index n3 = 0. Furthermore, when the thickness of the
PhC slab is very small, the frequency of the FP2 mode, which has
the same σz symmetry as the GR(−1)

0 mode, is quite high, so that
this FP mode will not be coupled with the GR(−1)

0 mode to form a
BIC. The corresponding band diagram is illustrated in the lowest
inset. In this situation, the GR(−1)

0 band is kept in (0, 1, 0) phase
(the lowest gray area). When slab thickness increases to a critical
value (the lowest black solid line), the BIC resulting from the
coupling of GR(−1)

0 and FP2 modes appears at the0 point, and the
GR(−1)

0 band transfers from (0, 1, 0) phase to (1, 1, 0) phase (the
lowest blue area). The band diagram for (1, 1, 0) phase is displayed
in the middle inset.

When the slab thickness further increases, high-order FP modes
also have redshift, interact with the GR(−1)

0 band, and form more
BICs. The critical values of slab thicknesses are shown by the
other black solid lines. Meanwhile, accidental BICs resulting from
the coupling of the GR and FP modes also move toward lower
frequency, and eventually fall below the light line and disappear,
forming another type of critical line of slab thickness indicated by
black dashed lines in Fig. 1(c). We note that as the slab thickness
increases, the smaller ε2 is, the slower the redshift of the FP mode
is, so that the BIC resulting from the coupling of the GR mode and
lower-order FP mode may coexist with the BIC resulting from the
coupling of the GR mode and higher-order FP mode. For example,
two accidental BICs caused by FP2n and FP2n+2 modes coexist
on the GR(−1)

0 band and form (2, 1, 0) phase (orange area). Such a
case is shown in the uppermost inset of Fig. 1(c). When three and
four FP bands interact with the GR(−1)

0 band, (3, 1, 0) and (4, 1, 0)
phases appear as indicated, respectively, by green and black regions
in Fig. 1(c). It is notable that normally there is no merging between
the accidental BICs caused by FP modes of different orders on the
same GR band. However, on the phase boundaries marked by the
black solid lines, the accidental BICs and symmetry-protected
BICs merge at the 0 point, which will be described later in detail.
It is noted that such phase boundaries are almost flat along the per-
mittivity axis, which reveals a generic property of the at-0merging
BIC for different optical parameters.

As is mentioned above, the type of BIC resulting from the
coupling of two different GR modes does not exist on the GR(−1)

0
band, so this part is missing in the phase diagram of Fig. 1(c),
while this type of BIC can appear on a higher frequency band, for
instance, the GR(+1)

0 band. The phase diagram of BICs on this
band is shown in Fig. 1(d). The symmetry-protected BIC does not

https://doi.org/10.6084/m9.figshare.21518352
https://doi.org/10.6084/m9.figshare.21518352
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exist at the 0 point on this band, so there is a region without any
BIC, i.e., (0, 0, 0) phase (white area). As slab thickness increases
towards the critical line (black dashed), the BIC resulting from
the GR and FP modes emerges from the folded light line. As slab
thickness further increases to another critical line (black solid), this
BIC moves to the0 point, merges with its symmetrical counterpart
on the negative kx axis, and then deflects onto the ky axis, which
will also be discussed in detail later. When the slab thickness is
between the two critical lines, the GR(+1)

0 band is in (1, 0, 0) phase
(blue area), one example of which is shown in the lowest inset. If the
GR(−1)

2n (n ≥ 1) band intersects with and is coupled to the GR(+1)
0

band, normally an anticrossing effect occurs, and in the vicinity of
the anticrossing point appears the BIC resulting from the coupling
of these two GR modes. This type of BIC emerges from the folded
light line when the slab thickness is on the critical line (red dashed).
As slab thickness increases towards another critical line (red solid),
it moves to the0 point. During this process, the GR(+1)

0 band is in
a new phase, i.e., (0, 0, 1) phase (green area), one example of which
is shown in the middle inset of Fig. 1(d). Since the redshift of the
FP mode is larger than that of GR mode when the slab thickness
increases, the range of thickness for the existence of BICs resulting
from the coupling of two different GR modes is far wider than that
for the existence of accidental BICs. When the above two ranges
overlap, a new BIC phase arises, (1, 0, 1) phase (purple area). In this
type of phase, as shown in the uppermost inset, two different types
of Friedrich–Wintgen BICs (BICs resulting from the coupling
of two different GR modes and accidental BICs) coexist and may
exhibit more interesting phenomena of BICs, such as merging BIC
at the off− 0 point [23].

C. Charge Dynamics of BICs

The global phase diagrams of BICs give us a clear picture of the
charge dynamics of BICs. Here, the dynamics refers to the move-
ment of BICs in the parameter space instead of the time axis. When
a phase transition takes place, BICs can merge, emerge, or disap-
pear in momentum space. Figure 2(a) shows the evolution of BICs
in the kx − h space on the GR(−1)

0 band when ε2 = 2.1. As the
slab thickness gradually increases, the BIC (red circle) resulting
from the coupling of the GR(−1)

0 and FP2 modes moves in the
direction of increasing kx and finally extends to the zone boundary
kx =±π/a . When h increases to a certain critical value, the BIC
(green circle) resulting from the coupling of the GR(−1)

0 and FP4

modes appears at the 0 point and then exhibits a similar evolution
behavior. These BICs lie close to the trajectory of the intersection
point of folded GM0 and FP2 (FP4) bands in the effective medium
slab as shown by the red (green) dashed lines. This again manifests
the fact that the accidental BICs originate from the coupling of GR
and FP modes. The deviation comes from the fact that the inter-
section points can be treated as nearly the avoided crossing points,
which are determined by the non-interacting Hamiltonian. If the
Hamiltonian is corrected by considering their coupling, we find
that the result (solid lines) coincides with the BICs that obtained
from full-wave simulations (circles) in Fig. 2(a).

However, there are two differences between TE polarization
and TM polarization. First, compared to TE polarization, BICs
resulting from the coupling of the GR and FP modes can exist in
a very thin PhC slab (h/a ∼ 0.2) for TM polarization. Second,
there exist at-0 BICs on the TE band, which are symmetry-
protected (black circles). So when evolution trajectories of BICs
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Fig. 2. Evolution of BICs in the kx − h space. (a) The trajectories
(dashed lines) of the intersection point of folded GM0 and FP bands in
the effective medium slab are close to the trajectories (circles) of BICs
obtained through full-wave simulation. Red and green color represent
the involvement of the FP2 and FP4 bands, respectively. The trajectories
(solid lines) of BICs obtained through a fitting using Friedrich–Wintgen
Hamiltonian coincide with the simulated results. (b) For TE (TM)
polarization, the simulated reflection spectra of the PhC slab at h/a = 1.4
and 2.15 (0.9 and 1.7) are shown to exhibit different BIC phases. White
dashed lines denote the folded light lines. The vanishing points of Fano
peaks shown by circles in the spectra represent BICs on the GR(−1)

0 band,
the color of which is the same as that in (a). The corresponding Q factors
of the GR(−1)

0 band are shown in the lower panels to verify the existence of
BICs. Here, the other system parameters are the same as those in Fig. 1,
and ε2 = 2.1.

intersect with the axis kx = 0, on the TE band, BICs of different
types merge at h/a = 1.044 and 2.045, while on the TM band,
BICs of the same type merge at h/a = 1.447. These two types
of merging correspond to different BIC phase transitions. For
demonstration, we show reflection spectra and Q factors of the
GR(−1)

0 band in two different BIC phases in Fig. 2(b). As the slab
thickness decreases, the TE band changes from (2, 1, 0) phase into
(1, 1, 0) phase and the TM band from (2, 0, 0) into (1, 0, 0).

To further study charge dynamics in the vicinity of the0 point,
we show the band structures and far-field polarization maps of
the GR(−1)

0 band in Fig. 3, where there are three different types
of evolutions of BICs. The Q factors of GR(−1)

0 modes are shown
as background. Note that the topological charge is defined by
v = (1/2π)

∮
L d k‖ · ∇k‖ψ(k‖).

Here, L is a closed loop in momentum space surround-
ing the singular point in the counterclockwise direction, and
ψ(k||)= 1/2 arg[S1(k||)+ i S2(k||)] is the orientation angle
of the polarization state, where Si is the Stokes parameter of the
far-field polarization vector. For the TE mode, the GR(−1)

0 and
FP2 modes are coupled to each other to produce an off− 0 BIC
with v =−1 on the positive kx axis, as shown in Fig. 3(a). Due to
the inversion symmetry of the system, there is an identical off− 0
BIC with v =−1 on the negative kx axis. As the slab thickness
decreases, a blue shift occurs on the FP2 band, and this causes
the off− 0 BICs to gradually move towards the 0 point. When
h = 1.0424a , they merge with the symmetry-protected BIC with
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Fig. 3. Examples of charge dynamics of BICs in the vicinity of the 0
point. (a) Evolution of the BIC resulting from the coupling of the
TE-polarized GR(−1)

0 and FP2 modes as slab thickness changes. The
simulated band structures of GR(−1)

0 and FP modes are both plotted.
The Q factors of GR(−1)

0 modes are shown on the band structure in color
scale. A pair of off− 0 BICs with v =−1 and a symmetry-protected
BIC with v =+1 merge at the 0 point. The numbers (n1, n2, n3) at
the top of each figure represent BIC phases of the GR(−1)

0 band on the
positive kx axis. (b) Evolution of the BIC resulting from the coupling of
the TM-polarized GR(−1)

0 and FP4 modes as the slab thickness changes. A
pair of off− 0 BICs with v =+1 merge at the0 point to form a BIC with
v =+2, which then splits into a pair of BICs with v =+1 moving along
the ky axis. (c) Coupling of the TE-polarized GR(−1)

0 mode and TM-
polarized FP3 mode with slab thickness changing. When h ≤ 1.1061a ,
the two modes are coupled to each other and produce a pair of BICs with
v =−1 on the ky axis. The off− 0 BICs with v =−1 on the kx axis
are not involved in this charge splitting process. Here, the other system
parameters are the same as those in Fig. 2.

v =+1 to form a BIC with v =−1 at the 0 point. As the slab
thickness further decreases, off− 0 BICs will not deflect onto the
ky axis. This is because for TE-like modes on the ky axis, far-field
radiation of the GR(−1)

0 mode is x -polarized and far-field radiation
of the FP2 mode is y -polarized, so they cannot destructively inter-
fere with each other to produce BICs (see Fig. S10 in Supplement
1 for details). In this evolution, the GR(−1)

0 band changes from
(1, 1, 0) to (0, 1, 0) phase.

Similarly, in the case of the TM mode, we still take the GR(−1)
0

mode for example. This mode couples to the FP4 mode to produce
an off− 0 BIC with v =+1 on the positive kx axis, as shown
in Fig. 3(b). As the slab thickness decreases to h = 1.4467a , this
off− 0 BIC merges with its counterpart on the negative kx axis to
form a BIC with v =+2 at the 0 point. This topological charge
v =+2 is allowed by the symmetry of the system [7]. However,
unlike the situation in the TE case, the far-field radiations of

TM-like GR(−1)
0 mode and FP4 mode on the ky axis are both

x -polarized, and they can destructively interfere with each other to
produce a BIC. This means the resultant at-0 BIC with v =+2 is
not stable. As the slab thickness continues to decrease, it splits into
a pair of BICs with v =+1 that move along the ky axis. During this
evolution, the BIC phase of the GR(−1)

0 band changes from (1, 0, 0)
to (0, 0, 0) since the indices of phase here are defined on the positive
kx axis. It is obvious that our classification of BIC phases is also
applicable to the ky axis and even the whole momentum space. For
instance, if the first quadrant of momentum space is considered,
the BIC phase remains unchanged, i.e., (1, 0, 0) phase. We choose
the positive kx axis in this study only because most previous studies
focus on this axis [6,7,9,21,25,30].

The above two types of BIC evolution stem from the interaction
between the GR mode and the FP mode, which have the same
polarization. In fact, the GR mode and the FP mode, which are
differently polarized, can also interact and cause BICs to evolve.
In Fig. 3(c), we take TE-polarized GR(−1)

0 and TM-polarized
FP3 modes as an example. On the kx axis, they are completely
orthogonal in polarization and hence are not coupled to each other.
However, on the ky axis, they have the same σz symmetry and
their far-field radiations are both x -polarized, so they may destruc-
tively interfere with each other to produce a BIC. Here, when
h ≤ 1.1061a , a pair of BICs with v =−1 appears on the ky axis
while the topological charge carried by the symmetry-protected
BIC changes from −1 to +1. In this evolution, the phase of the
GR(−1)

0 band remains unchanged, i.e., (1, 1, 0) since we only con-
sider the positive kx axis. If the first quadrant of momentum space
is considered, the BIC phase changes from (1, 1, 0) to (2, 1, 0).

The phenomenon of charge splitting shown in Fig. 3(c) has not
been reported previously. Such kind of charge dynamics is a natural
result from the viewpoint of the interaction between GR and FP
modes. Whether BICs exist or not can be estimated through the
polarization analysis of their far-field radiations. It is also worth
noting that in the charge dynamics considered above, the FP mode
plays a critical role. We can use EMT to estimate the change of the
FP mode when the system parameters change, allowing us to trace
accidental BICs along the intersection points as indicated in Fig. 2,
which can provide guidance for experimental designs.

3. EXPERIMENTAL OBSERVATION

To verify the phase diagram of BICs above, we experimentally
observed the phase and phase transitions of BICs. As the aspect
ratio (h/a ) is high, experimental samples are difficult to fabricate
and may exhibit a tapering shape. In order to make the sample
fabrication easier, we adopt a structure similar to PhC slab in the
experiment, i.e., the combination of a grating with small thick-
ness and a high-index uniform slab. As shown in Fig. 4(a), the
high-index slab is made of SiO2 with a thickness h , and the grating
consists of an array of polymethyl methacrylate (PMMA) with a
refractive index of 1.5, a thickness of h g = 100 nm, a periodic-
ity of a = 400 nm, and an etching width of d = 200 nm. Using
metal substrate (a 240-nm-thick silver film evaporated on a glass
substrate) as a reflecting mirror, we can further reduce the thick-
ness of the whole structure. In order to prevent oxidation of the
silver film, a layer of 25 nm Al2O3 is introduced between the silver
film and SiO2 slab (see Supplement 1, Section 9, for the details of
sample fabrication). Due to the periodicity of the PMMA array,
the bands of waveguide modes in the SiO2 slab are folded into the

https://doi.org/10.6084/m9.figshare.21518352
https://doi.org/10.6084/m9.figshare.21518352
https://doi.org/10.6084/m9.figshare.21518352
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Fig. 4. Experimental observation of charge dynamics of BICs in the
kx − h space. (a) Sketch of the experimental structure, where period
a = 400 nm, d = 200 nm, and h g = 100 nm. (b),(c) Experimentally
observed (circles) and simulated trajectories (solid lines) of the BICs
caused by FP modes of different orders on the TE-polarized GR(−1)

1 and
TM-polarized GR(−1)

0 bands. The trajectories of the intersection points
of the corresponding folded GM and FP bands in the effective medium
slab are also marked by the red and green dashed lines, respectively.
(d),(e) Experimentally observed reflection spectra of the structure with
different h for TE and TM polarization. The points in circles represent
accidental BICs on the TE-polarized GR(−1)

1 or TM-polarized GR(−1)
0

band, the simulated results of which are indicated by the purple dashed
lines. The simulated FP bands are marked by the red and green dashed
lines, the colors of which correspond to the resultant BICs. The black
areas at the lower right corner are those which cannot be measured due to
limitations of the numerical apertures of the objective lens.

continuum and hence radiate into free space, making it possible for
us to observe GR(m)n bands. Owing to the introduction of the metal
mirror, the effective slab thickness is doubled. However, only the
modes that have zero transverse component of the electric field at
the mirror surface survive, that is, the TE-polarized GR(m)2n+1 mode
or the TM-polarized GR(m)2n mode.

As discussed above, these GR modes can couple to the FP
modes with the same symmetry and, as a result, produce BICs
under specific parameters. To observe the evolution trajectories
of BICs in this type of structure, we employ momentum-space
imaging spectroscopy [8] to obtain polarization-dependent angle-
resolved reflectance spectra, TE and TM polarizations of which
are shown in Fig. 4(d) and 4(e), respectively. Here, we focus on the
BICs on TE-polarized GR(−1)

1 and TM-polarized GR(−1)
0 bands, as

indicated by the red and green dots. The corresponding simulated
dispersion curves (purple dashed lines) are shown in Figs. 4(d) and
4(e), agreeing well with the measured spectra. It is noted that the
other vanishing points of reflection dip in the measured spectra
correspond to the BICs on the higher-frequency bands. As the
thickness h of the SiO2 slab gradually increases, a redshift of fre-
quency of the FP bands (red and green dashed lines) occurs, which
causes BICs to move in the direction of increasing kx . The observed
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Fig. 5. Experimental observation of BICs merging at off− 0 point.
(a) Sketch of the structure. (b) Simulated band structure. On the TE-
polarized GR(+1)

1 band, there exist two BICs with opposite topological
charges, which result from the coupling of the GR(+1)

1 and GR(−1)
3 (or

FP5) modes. (c) Far-field polarization map of GR(+1)
1 band with the radi-

ation Q factor as the background. (d) Experimentally observed reflection
spectra with different h g . The two BICs with opposite charges are marked
by the red and blue arrows. As h g decreases, the two BICs gradually move
close to and merge with each other, and then are annihilated. (e) Evolution
trajectories of the two BICs. Here, the structural parameters are chosen as
h = 350 nm, d = 130 nm and the other parameters are the same as those
in Fig. 4.

trajectories of BICs in the kx − h space exactly fit the simulated
ones, as shown in Figs. 4(b) and 4(c). Moreover, these BICs lie close
to the trajectory of the intersection points of the corresponding
folded GM and FP bands obtained by the EMT as shown by the
red and green dashed lines. This verifies the Friedrich–Wintgen
origin as well as the charge dynamics of accidental BICs we depict
in Fig. 2.

We further construct a more interesting merging BIC at the
off− 0 point based on the phase diagrams in Fig. 1(d). In exper-
iments, we still use the structure shown in Fig. 4 but replace the
layers of SiO2 and PMMA with Si3N4 layers, as shown in Fig. 5(a).
In Fig. 5(b), there exists a BIC with v =+1 and a BIC with v =−1
on the TE-polarized GR(+1)

1 band, and their topological charges
are shown in the far-field polarization map in Fig. 5(c). The BIC
with v =+1 results from the coupling of the GR(+1)

1 and GR(−1)
3

modes and is located in the vicinity of the anticrossing point of
these two bands. Yet the BIC with v =−1 results from the cou-
pling of the GR(+1)

1 and FP5 modes, and as structural parameters
change, it moves in tandem with the movement of the FP5 band.
In this experiment, we keep the thicknesses of the whole Si3N4

layer the same, and adjust the effective relative permittivity εeff

by changing etching depth h g in the Si3N4 layer. As h g decreases,
εeff increases gradually and a redshift occurs in the FP5 band. This
causes the BIC with v =−1 to move toward the BIC with v = 1 to
form a merging BIC, which is finally annihilated. The experimen-
tally obtained reflection spectra of the structure with different h g

in Fig. 5(d) clearly show the merging process of the two BICs with
opposite topological charges. More measured reflection spectra are
also given in Fig. S12. The evolution trajectories of the two BICs
in the kx − h space are shown in Fig. 5(e), which terminate at their
intersection point and form a merging BIC.
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4. CONCLUSION

It is demonstrated that all the three types of BICs in the PhC
slab are Friedrich–Wintgen-type BICs, in the sense that the far-
field radiation is suppressed by the interference of two degrees of
freedom. Each category of BIC has its own Friedrich–Wintgen
origin: the accidental BIC stems from the coupling of the GR and
FP modes; the symmetry-protected BIC the coupling of a pair
of degenerate GR modes at the 0 point; and the conventional
Friedrich–Wintgen BIC the coupling of two different GR modes.
Based on the three Friedrich–Wintgen origins of BICs, the global
phase diagram of BICs can be obtained for each band in the param-
eter space, and their evolution in momentum space can be revealed
using the phase diagram. As system parameters change, BICs
resulting from the coupling of the GR and FP modes move along-
side the movement of the FP mode. A new phase will appear when
they merge with different types of BICs, including BICs of the
same type (their symmetrical counterparts in momentum space)
or the symmetry-protected BIC at the 0 point, or the BICs result-
ing from the coupling of two different GR modes at the off− 0
point. We further experimentally observe the phase transitions
and critical points of BICs, including their merging process at the
off− 0 point. The finding that the BICs originate from different
manifestations of the Friedrich–Wintgen mechanism and their
corresponding phase diagrams can deepen our understanding of
BICs and provide guidance for experimental designs and practical
applications.
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